Estimating functionals of the error distribution in parametric and nonparametric regression

نویسندگان

  • Ursula U. Müller
  • Anton Schick
  • Wolfgang Wefelmeyer
چکیده

We consider estimation of linear functionals of the error distribution for two regression models: parametric and nonparametric, and for two types of errors: independent of the covariate and centered (type I), and conditionally centered given the covariate (type II). We show that the residual-based empirical estimators for the nonparametric type I model remain efficient in the type II model. For the parametric type I regression model, efficient estimators are obtained by correcting the empirical estimator using that the errors are centered, and using an efficient estimator for the regression parameter. Since such efficient parameter estimators do not remain consistent in the parametric type II model, neither does the empirical estimator. We construct efficient estimators for linear functionals of the error distribution in the parametric type II regression model, starting from residual-based empirical estimators, correcting it for the fact that the errors are conditionally centered, and using an appropriate efficient weighted least squares estimator for the regression parameter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating linear functionals of the error distribution in nonparametric regression

This paper addresses estimation of linear functionals of the error distribution in nonparametric regression models. It derives an i.i.d. representation for the empirical estimator based on residuals, using undersmoothed estimators for the regression curve. Asymptotic efficiency of the estimator is proved. Estimation of the error variance is discussed in detail. In this case, undersmoothing is n...

متن کامل

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

Models as Approximations — Part II: A General Theory of Model-Robust Regression

We discuss a model-robust theory for general types of regression in the simplest case of iid observations. The theory replaces the parameters of parametric models with statistical functionals, to be called “regression functionals” and defined on large non-parametric classes of joint x-y distributions without assuming a working model. Examples of regression functionals are the slopes of OLS line...

متن کامل

Estimating the error distribution function in semiparametric additive regression models

We consider semiparametric additive regression models with a linear parametric part and a nonparametric part, both involving multivariate covariates. For the nonparametric part we assume two models. In the first, the regression function is unspecified and smooth; in the second, the regression function is additive with smooth components. Depending on the model, the regression curve is estimated ...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003